

Abstracts

GaAs Heterojunction Bipolar Transistor Device and IC Technology for High-Performance Analog and Microwave Applications

M.E. Kim, A.K. Oki, G.M. Gorman, D.K. Umemoto and J.B. Camou. "GaAs Heterojunction Bipolar Transistor Device and IC Technology for High-Performance Analog and Microwave Applications." 1989 Transactions on Microwave Theory and Techniques 37.9 (Sep. 1989 [T-MTT] (Special Issue on FET Structures Modeling and Circuit Applications)): 1286-1303.

This paper discusses the GaAs/AlGaAs N-p-n heterojunction bipolar transistor (GaAs HBT) technology and its application to analog and microwave functions for high-performance military and commercial systems. In focused applications the GaAs HBT offers key advantages over alternative advanced silicon bipolar and III-V compound field-effect transistor (FET) approaches. The TRW GaAs HBT device and IC fabrication process, basic HBT dc and RF performance, examples of applications, and qualification work are presented and serve as a basis for addressing general technology issues. A relaxed 3 μ m emitter-up, self-aligned HBT IC process permits a combination of excellent transistor dc and RF performance including simultaneous f_{sub} T/, f_{sub} max/ /spl ap/ 20-40 GHz and dc current gain beta /spl ap/ 50-100 at useful collector current densities J_{sub} C/ /spl ap/ 3-10 kA/cm², Early voltage V_{sub} A/ /spl ap/ 500-1000 V, and MSI-LSI integration levels. These capabilities facilitate versatile dc-20 GHz analog/microwave as well as 3-6 Gbit/s digital, 2-3 Gs/s A/D conversion, and monolithically combined functions -- with producibility. In analog and microwave applications, key improvements are realized over Si bipolar and GaAs-related FET (such as MESFET and HEMT) approaches in combinations of operational frequency, power consumption, gain-bandwidth product, harmonic distortion, and phase (1/f) noise.

[Return to main document.](#)

Click on title for a complete paper.